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Abstract
Noninertial transformations on time–position–momentum–energy space
{t, q, p, e} with invariant Born–Green metric ds2 = −dt2 + 1

c2 dq2 + 1
b2

(
dp2 −

1
c2 de2

)
and the symplectic metric −de ∧ dt + dp ∧ dq are studied. This

U1, 3) group of transformations contains the Lorentz group as the inertial
special case and, in the limit of small forces and velocities, reduces to the
expected Hamilton transformations leaving invariant the symplectic metric and
the nonrelativistic line element ds2 = −dt2. The U(1, 3) transformations
bound relative velocities by c and relative forces by b. Spacetime is no longer
an invariant subspace but is relative to noninertial observer frames. In the limit
of b → ∞, spacetime is invariant. Born was lead to the metric by a concept of
reciprocity between position and momentum degrees of freedom and for this
reason we call this reciprocal relativity. For large b, such effects will almost
certainly only manifest in a quantum regime. Wigner showed that special
relativistic quantum mechanics follows from the projective representations of
the inhomogeneous Lorentz group. Projective representations of a Lie group
are equivalent to the unitary representations of its central extension. The same
method of projective representations for the inhomogeneous U(1, 3) group
is used to define the quantum theory in the noninertial case. The central
extension of the inhomogeneous U(1, 3) group is the cover of the quaplectic
group Q(1, 3) = U(1, 3) ⊗s H(4). H(4) is the Weyl–Heisenberg group. The
H(4) group, and the associated Heisenberg commutation relations central to
quantum mechanics, results directly from requiring projective representations.
A set of second-order wave equations result from the representations of the
Casimir operators.
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1. Introduction

1.1. Special relativity transformations

Special relativity defines transformations between inertial frames in spacetime. For simplicity
of exposition, let us start by considering the one-dimensional case, {t, q} ∈ M � R

2, for
which the global transforms on time and position are

t̃ = γ ◦(v)
(
t +

v

c2
q
)

, q̃ = γ ◦(v) (q + vt) , (1)

with

γ ◦(v) =
(

1 − v2

c2

)−1/2

. (2)

These transformations act locally on the frames {dt, dq} in the cotangent vector space

dt̃ = γ ◦(v)
(

dt +
v

c2
dq

)
,

dq̃ = γ ◦(v)(dq + v dt).
(3)

The corresponding transforms act on momentum–energy space {p, e} ∈ M̃ � R
2

p̃ = γ ◦(v)
(
p +

v

c2
e
)

, ẽ = γ ◦(v) (e + vp) . (4)

In the neighbourhood of an inertial frame, the local expressions in terms of the frame {dp, de}
in the cotangent vector space is

dp̃ = γ ◦(v)
(

dp +
v

c2
de

)
,

dẽ = γ ◦(v) (de + v dp) .
(5)

These transformations leave invariant the orthogonal metrics defining the line elements

ds2 = −dt2 +
1

c2
dq2, dµ2 = dp2 − 1

c2
de2. (6)

Spacetime M and momentum–energy space M̃ may be combined to form the time–
position–momentum–energy space P � M ⊗ M̃ � R

4 and the above expressions (3), (5) may
be regarded as acting on frames dz = {dt, dq, dp, de} ∈ T ∗

zP in the cotangent vector space
of P where z = {t, q, p, e} ∈ P. The line elements1 given in (6) are defined on this space that
continue to be invariant under the action of (3), (5). Additionally, there is a symplectic metric
ζ = −de ∧ dt + dp ∧ dq that is invariant under these transforms.

The line elements ds2 and dµ2 are invariant under SO(1, 1)⊗SO(1, 1).2 The symplectic
metric ζ is invariant under the symplectic group Sp(4). Transformations leaving both the
line elements and the symplectic metric invariant are in the intersection of these of these two
groups:

(SO(1, 1) ⊗ SO(1, 1)) ∩ Sp(4) � SO(1, 1). (7)

This SO(1, 1) group is the group of local inertial canonical3 transformations on T ∗
zP.

Elements in the group may be written as the 4×4 real matrix group �(v) with transformations

dz̃ = ∂z̃

∂z
dz = �(v) dz, (8)

1 The component matrix of the line elements are singular and therefore these line elements do not define metrics on
T ∗

zP.
2 Each line element is actually invariant under O(1, 1). This group is required in the quantum case.
3 Transformations leaving the symplectic metric invariant are generally referred to as canonical.
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(using matrix notation) where the matrices are explicitly

�(v) = γ ◦(v)




1 v
c2 0 0

v 1 0 0
0 0 1 v

c2

0 0 v 1


 . (9)

It is the symplectic condition in (7) that requires that the velocity parameter for the
independent SO(1, 1) groups in the direct product to be the same. The transformations by
�(v) in (8) are the transformations given in (3), (5). The group multiplication law is the usual
relation for the addition of velocities in this one-dimensional case of special relativity,

�(v) · �(ṽ) = �

(
v + ṽ

1 + vṽ/c2

)
. (10)

Time is relative to the inertial observer in special relativity. There is no absolute rest
frame. However, implicit in the restriction that these transformations are valid only between
inertial observers is the assumption of an absolute inertial frame that all observers agree on.
The velocity addition law ensures that the addition of velocities is bounded by c.

The above discussion generalizes straightforwardly to the (1 + 3)-dimensional case for
which the group defined in (7) becomes

(SO(1, 3) ⊗ SO(1, 3)) ∩ Sp(8) � SO(1, 3). (11)

All of the groups in this expression are matrix groups and therefore the group elements are
conveniently realized as eight-dimensional matrices.

1.2. Nonrelativistic inertial transformations: Hamilton’s equations

The nonrelativistic limit is the case where v/c → 0 or equivalently c → ∞. In this limit, (3)
and (5) reduce to

dt̃ = dt,

dq̃ = dq + v dt,

dp̃ = dp,

dẽ = de + v dp,

(12)

and in the limit c → ∞ the line elements in (6) reduce to

ds2 = −dt2, dµ2 = dp2. (13)

The symplectic metric ζ is not affected by the limit and continues to be an invariant
of the transformations. The group leaving both these invariant is the contraction of the
one-dimensional Lorentz group to the Euclidean group,

lim
c→ ∞SO(1, 1) = E(1) � T (1). (14)

As the one-dimensional Euclidean group is the translation group, the contraction of the matrix
realization in (7) is

�(v) = lim
c→ ∞ �(v) =




1 0 0 0
v 1 0 0
0 0 1 0
0 0 v 1


 . (15)

This satisfies the group composition law for translation group, �(ṽ) · �(v) = �(ṽ + v).
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The transformations in (12) are the canonical transformations between inertial frames in
non-relativistic Hamilton mechanics. Because time in is an invariant of these transformations,
we say that time is invariant or absolute; all inertial observers agree on the definition of the
time subspace of this time–position–momentum–energy space. Velocity is simply additive
and is unbounded. It follows from the transformations that there is a special frame that is an
absolute inertial rest frame.

The canonical transformations in the nonrelativistic limit may be integrated to determine
the transformations z̃a = f a(z),

dz̃a = ∂f a(z)

∂zb
dzb = [�(v)]ab dzb,

∂f a(z)

∂zb
= [�(v)]ab. (16)

To explicitly compute these partials of f a(t, q, p, e) with z = {t, q, p, e}, use the form
of �(v) given in (22). The diagonal elements are the boundary conditions

∂f 1

∂t
= 1,

∂f 2

∂q
= 1,

∂f 3

∂p
= 1,

∂f 4

∂e
= 1, (17)

and the remaining nonzero terms are Hamilton’s equation for the velocity

∂f 2

∂t
= v = ∂f 4

∂p
. (18)

All other partials are zero, including what would be the second of Hamilton’s equations for
forces, as one would expect for an inertial transformation

∂f 3

∂t
= f = 0 = −∂f 4

∂q
,

∂f 4

∂t
= r = 0. (19)

These nonrelativistic equations may be integrated, neglecting trivial constants, to define the
inertial canonical transformations z̃a = f a(z):

t̃ = f 1(t, q, p, t) = t,

q̃ = f 2(t, q, p, t) = q + q(t) = q + vt,

p̃ = f 3(t, q, p, t) = p,

ẽ = f 4(t, q, p, t) = e + H(p).

(20)

Then, (18), (19) are
dq(t)

dt
= v = ∂H

∂p
,

dp(t)

dt
= f = −∂H

∂q
,

∂H

∂t
= r, (21)

with f = r = 0 for this inertial case.

1.3. Nonrelativistic noninertial transformations: Hamilton’s equations

Hamilton’s equations and the corresponding canonical transformations are generally valid for
noninertial transformations where forces are non-zero. A frame associated with an arbitrary
particle obeying Hamilton’s equations is generally noninertial. In this case, the equations in
(19) are no longer zero and consequently the matrix (15) becomes

�(v, f, r) =




1 0 0 0
v 1 0 0
f 0 1 0
r −f v 1


 . (22)

By direct matrix multiplication, it may be verified that this is a matrix group with product4

�(ṽ, f̃ , r̃) · �(v, f, r) = �(v + ṽ, f + f̃ , r + r̃ + vf̃ − f ṽ). (23)

4 This is the group composition law for the Weyl–Heisenberg group. The reason for this is discussed following (45).
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We call this group the Hamilton group Ha(1). This leads to the set of transformations
dz̃ = �(v, f, r) dz that are explicitly

dt̃ = dt,

dq̃ = dq + v dt,

dp̃ = dp + f dt,

dẽ = de + v dp − f dq + r dt.

(24)

These leave invariant the line element ds2 = −dt2 and the symplectic metric ζ =
−de ∧ dt + dp ∧ dq. As expected, the line element dµ2 = dp2 is no longer an invariant.
Again, these may be integrated to give

t̃ = f 1(t, q, p, t) = t,

q̃ = f 2(t, q, p, t) = q + q(t),

p̃ = f 3(t, q, p, t) = p + p(t),

ẽ = f 4(t, q, p, t) = e + H(p, q, t).

(25)

Using (16) this directly results in Hamilton’s equations that are given in (21) with f, r not
necessarily zero

Alternatively, one can start from the assumption that the line element ds2 = −dt2 and the
symplectic metric are invariant and arrive at the matrix group (22). This, in turn, leads directly
to the transformation equations (24), (25) and Hamilton’s equations (21).

This establishes the equivalence of the formulations. These equations and arguments
readily generalize to three spacial dimensions.

The transformations in (20), (24) are the canonical transformations between frames that
are generally noninertial for non-relativistic Hamilton mechanics. As in the inertial case, time
in is an invariant of these transformations and so we say that time is invariant or absolute.
All observers agree on the definition of the time subspace of this time–position–momentum–
energy space. Velocity is simply additive and is unbounded. Force is simply additive and
unbounded. It follows from the transformations that there is a special frame that is an absolute
inertial rest frame.

1.4. Noninertial relativistic transformations

The Lorentz group is the group of transformations between inertial frames in special relativity.
Hamilton’s group is the group of noninertial transformations in nonrelativistic Hamilton’s
mechanics. Both of these groups leave invariant the symplectic metric ζ and are therefore are
subgroups of the symplectic group. Again, special relativity leaves invariant the line elements

ds2 = −dt2 +
1

c2
dq2, dµ2 = dp2 − 1

c2
de2, (26)

whereas Hamilton’s equations leave invariant the nonrelativistic line element ds2 = −dt2.
We are looking for the group of transformations that reduces to the special relativistic
transformations in the special case of inertial frames. Furthermore, in the limit of small
velocities and small forces, it must contract to Hamilton’s group (22). A group with this
property follows directly by combining the degenerate orthogonal line elements into the single
orthogonal Born–Green metric [1]

ds2 = −dt2 +
1

c2
dq2 +

1

b2

(
dp2 − 1

c2
de2

)
. (27)
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Here b is a universal constant, and together with c and h̄, defines a dimensional basis5 with
scales

λt =
√

h̄

bc
, λq =

√
h̄c

b
, λp =

√
h̄b

c
, λe =

√
h̄bc. (28)

The group that leaves this orthogonal metric invariant is O(2, 2). The symplectic metric
ζ continues to be invariant. The group of transformations leaving both the orthogonal and
symplectic metric invariant is

O(2, 2) ∩ Sp(4) � U(1, 1). (29)

The unitary group is basic to the quantum formulation. Again, as in (7), in the classical case,
only the special orthogonal metric needs to be considered and therefore

SO(2, 2) ∩ Sp(4) � SU(1, 1). (30)

The group elements of SU(1, 1) may be realized as the matrices �(v, f, r),

�(v, f, r) = γ (v, f, r)




1 v
c2

f

b2 − r
b2c2

v 1 r
b2

−f

b2

f − r
c2 1 v

c2

r −f v 1


 , (31)

with γ (v, f, r) = (1 − v2/c2 − f 2/b2 + r2/b2c2)
−1/2

.

1.4.1. Reciprocal relativity transformation equations. This group defines the transformations
dz̃ = �(v, f, r) dz that are explicitly

dt̃ = γ

(
dt +

v

c2
dq +

f

b2
dp − r

b2c2
de

)
,

dq̃ = γ

(
dq + v dt +

r

b2
dp − f

b2
de

)
.

(32)
dp̃ = γ

(
dp + f dt − r

c2
dq +

v

c2
de

)
,

dẽ = γ (de + v dp − f dq + r dt).

The group composition law between three frames is

�(v′′, f ′′, r ′′) · �(v′, f ′, r ′) = �(v, f, r) (33)

with v = gv(v
′, v′′, f ′, f ′′, r ′, r ′′), f = gf (v′, v′′, f ′, f ′′, r ′, r ′′) and r = gr(v

′, v′′, f ′,
f ′′, r ′, r ′′) where these are given by

v =
(

v′′ + v′ +
1

b2
(r ′f ′′ − f ′r ′′)

) / (
1 +

v′v′′

c2
+

f ′f ′′

b2
− r ′r ′′

b2c2

)
,

f =
(

f ′′ + f ′ +
1

c2
(−r ′v′′ + v′r ′′)

)/(
1 +

v′v′′

c2
+

f ′f ′′

b2
− r ′r ′′

b2c2

)
, (34)

r = (r ′′ + r ′ − f ′v′′ + v′f ′′)
/(

1 +
v′v′′

c2
+

f ′f ′′

b2
− r ′r ′′

b2c2

)
.

Proper acceleration at a specific moment is defined relative to a frame that may be
taken to be (v′′, f ′′, r ′′) with (dv′′, df ′′, dr ′′) = 0 [2]. The primed frame is momentarily

5 G is usually used as the third-dimensional constant, G = αG
c4

b
. If αG turns out to be unity, then these are the usual

Planck scales.
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locally inertially at rest relative to this frame, (v′, f ′, r ′) = 0, but has non-zero derivatives
(dv′, df ′, dr ′). Therefore, from (34), at this moment, (v, f, r) = (v′′, f ′′, r ′′). Then, taking
the derivative of (33) with these conditions gives

dv =
(

1 − v2

c2

)
dv′ +

1

b2

((
f +

rv

c2

)
dr ′ − (r + f v) df ′

)
,

df =
(

1 − f 2

b2

)
df ′ +

1

c2

((
−v +

f r

b2

)
dr ′ + (r − f v) dv′

)
, (35)

dr =
(

1 +
r2

b2c2

)
dr ′ −

(
v +

f r

b2

)
df ′ +

(
f − vr

c2

)
dv′.

Noting that dt ′ = γ (v, f, r)−1 dt , the derivative with respect to dt may be computed and the
equations inverted to yield the transformation of proper acceleration and impulse

dv′

dt ′
= γ (v, f, r)3

(
dv

dt
+

1

b2

(
f

dr

dt
− r

df

dt

))
,

df ′

dt ′
= γ (v, f, r)3

((
df

dt
+

1

c2

(
v

dr

dt
− r

dv

dt

))
, (36)

dr ′

dt ′
= γ (v, f, r)3

(
dr

dt
− f

dv

dt
+ v

df

dt

)
.

These transformations have the property that for inertial transformations where f = r =
0, that �(v, 0, 0) = �(v), where �(v) is the special relativity transformation in (9). The
special case f = r = 0 of the velocity transformation (34) and proper acceleration (36) are

v = g◦
v(v

′, v′′) = (v′ + v′′)
/ (

1 +
v′v′′

c2

)
,

(37)
dv′

dt ′
= γ ◦(v)3 dv

dt
,

where γ (v, 0, 0) = γ ◦(v) is defined in (2). In this case, the velocity transformation is identical
to the usual special relativity expression (10) and proper acceleration expression in (37) are as
expected in [2].

Null surfaces separate timelike from spacelike trajectories. In one-dimensional special
relativity, these are simply the cones 1

c2 dq2 = dt2 or v = ±c. It follows directly that
the velocity addition law has the fixed point v = g◦

v(v, v)|v=±c. A fixed point surface for
the noninertial transformations (34) that have the property that v = gv(v, v, f, f, r, r), f =
gf (v, v, f, f, r, r) and r = gr(v, v, f, f, r, r) is6

v2

c2
+

f 2

b2
= 1, r = 0. (38)

In this case, the four-dimensional (q, p, e, t) space may be visualized as three-dimensional
slices (q, p, t) with e constant. The null surfaces are the cones 1

c2 dq2 + 1
b2 dp2 = dt2. In the

inertial case with dp = 0, these reduce to the special relativity case v = ±c. There is the
corresponding case where the velocity is zero where f = ±b.

Time is clearly not an invariant subspace of the transformations and therefore time
is relative to the observer frame as is the case in special relativity. In addition, these
transformations do not have position–time (or spacetime) as an invariant subspace of the
group of transformations. This means that spacetime is relative to the frames of noninertial
observers. These effects become significant for relative forces between particle states that

6 Additional branches of the null surface exist for which r �= 0 that require further investigation.
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are large and approach the limiting value b corresponding to the extreme noninertial case.
Thus, we have the phenomena that the transformations mix the time–position with the energy–
momentum degrees of freedom. Spacetime itself has become relative.

1.4.2. Special relativity and nonrelativistic limits. The special relativistic limit is the case
where forces are small relative to the scale b, f/b → 0 . This is equivalent to the limit,
b → ∞. In this limit, the Born–Green line element defined in (27) reduces to the relativistic
line element in (26), −dt2 + 1

c2 dq2. Furthermore, the transformation equations (32) with the
corresponding velocity and proper acceleration equations given in (37)

dt̃ = γ
(

dt +
v

c2
dq

)
,

dq̃ = γ (dq + v dt).
(39)

dp̃ = γ

(
dp + f dt +

1

c2
(v de − r dq)

)
,

dẽ = γ (de + v dp − f dq + r dt).

This defines the matrix group

lim
b→ ∞

�(v, f, r) = �◦(v, f, r) = γ ◦(v)




1 v
c2 0 0

v 1 0 0
f − r

c2 1 v
c2

r −f v 1


 . (40)

The corresponding velocity transformation that is obtained from the group composition law
�◦(v′′, f ′′, r ′′) · �◦(v′, f ′, r ′) = �◦(v, f, r) and proper acceleration equations are of the form
given in (37). In addition, the force and power transformations are the expected

f = g◦
f (v′, v′′, f ′, f ′′, r ′, r ′′) =

(
f ′′ + f ′ +

1

c2
(v′r ′′ − r ′v′′)

)/(
1 +

v′v′′

c2

)
,

r = g◦
r (v

′, v′′, f ′, f ′′, r ′, r ′′) = (r ′′ + r ′ − f ′v′′ + v′f ′′)
/ (

1 +
v′v′′

c2

)
.

(41)

The nonrelativistic limit is now both small velocities, v/c → 0, and small forces,
f/b → 0. This is equivalent to the limit b, c → ∞. In this limit, the Born–Green line
element ds2 defined in (27) reduces to the nonrelativistic line element (13). Furthermore,

lim
b,c→ ∞

�(v, f, r) = �(v, f, r), (42)

and therefore the transformations reduce in this limit to Hamilton’s equations and the associated
transformations (24).

These equations may readily be generalized to the (1 + 3)-dimensional case in which case
the group is [3]

SO(2, 6) ∩ Sp(8) � SU(1, 3). (43)

The special relativity limiting form is

lim
b→ ∞

SU(1, 3) = SO(1, 3) ⊗s Ab(4), (44)

where Ab(4) is a (4(4 + 1)/2 = 10)-dimensional abelian group whose generators transform
under the action of the Lorentz generators as a (0,2) symmetric tensor and physically
correspond to ‘force-power stress’.

Again, in the special relativistic limit with b → ∞, the position–time degrees of freedom
no longer mix with the energy–momentum degrees of freedom and an absolute position–time,
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or spacetime, subspace that all observers agree on is recovered. This is analogous to the
recovery of an absolute concept of time in the c → ∞ limit of special relativity.

The nonrelativistic limiting form is

lim
c,b→ ∞

SU(1, 3) = Ha(3) = SO(3) ⊗s H(3) (45)

whereH(3) is the Weyl–Heisenberg group. (Equation (17) in [3]). Note that the corresponding
limit b, c → ∞ of SU(1, 1) is H(1) and therefore Ha(1) � H(1) as given in (22), (23).

b is defined in terms of G as b = αG
c4

G
≈ (1044N)αG . If αG is within a few orders

of unity, then the forces at which this occurs are very large. Such forces between particle
states would exist is the very early universe where interactions are very strong and frames are
strongly noninertial.

Born [1, 4] was led to the Born–Green metric through a principle of reciprocity that sought
to make the form of the physical equations invariant under the transform {q, p} → {p,−q}
and {t, e} → {−e, t} [5]. It can be verified that these transforms are a discrete automorphism
of this group. For this reason, we call the relativity of noninertial frames described above
reciprocal relativity.

2. Relativistic quantum mechanics

2.1. Special relativistic quantum mechanics

Particle states in quantum theory are represented by rays 	 in a Hilbert space H. Rays are
equivalence classes of states |ψ〉 ∈ H defined up to a phase, |ψ̃〉 � |ψ〉 if |ψ̃〉 = eiω|ψ〉 with
ω ∈ R. Rays are transformed from one to another through projective transformations that are
unitary (or antiunitary) transformations up to a phase.

Due to Wigner’s work [6], special relativistic quantum mechanics is now understood
in terms of the projective representations of the inhomogeneous Lorentz group. Projective
representations are equivalent to the unitary (or antiunitary7) representations � of the central
extension of this group [7]. As described in appendix A, central extensions arise either
algebraically through the addition of essential generators to the centre of the algebra that
conform to the Jacobi identities, or topologically where the group is lifted to its universal cover
and the central elements are the first homotopy group. Mackey’s method for semidirect product
groups may be used to determine the unitary irreducible representations (see appendix B)
[8–10].

The special relativity line element (7) is invariant under O(1, 3) � D4 ⊗s L, where
D4 � Z4 is the 4-element discrete PCT group and L is the proper orthochronous Lorentz
group

L ⊂ SO(1, 3) ⊂ O(1, 3). (46)

The projective representations of G = O(1, 3) ⊗s T (4) are equivalent to the unitary
representations � of the central extension of this group (appendix A) [6, 7]. The algebraic
extension is trivial and therefore the central extension Ǧ of G is the cover, Ǧ � G. The cover
of the discrete group is itself D4 � D4 and the Lorentz group has a 2–1 cover L = SL(2, C).
Special relativity is then the unitary, or antiunitary, representation of the (extended) Poincaré
group P = Ǧ � D4 ⊗s SL(2, C) ⊗s T (4)8. The two Casimir invariant operators for the
Poincaré group are C1 = ηa,bPaPb and C2 = ηa,bWaWb with Wa = εb,c,d

a Lb,cPd .

7 Antiunitary representations are required for the extended group that includes the discrete automorphisms. We refer
here-on only to unitary representations and leave this understood.
8 PCT is an approximate symmetry that is not always applicable.
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The unitary representations of the Poincaré group have been extensively studied and it is
not our purpose to repeat it here. We note only that the usual single particle wave equations
for single particle states, Klein–Gordon, Dirac, Maxwell and so forth, result from the solution
of the eigenvalue equations of the Hermitian representation of the Casimir invariants

Ĉα |ψ〉 = cα|ψ〉 with |ψ〉 ∈ H�, α = 1, 2, . . . , Nc, (47)

where the eigenvalues are c1 = −µ2 and c2 = s(s + 1)µ2 with µ interpreted as mass and s as
intrinsic spin or helicity.

This method may be applied to other homogeneous relativity groups K. The relativistic
quantum mechanics is the projective representations of the inhomogeneous group G =
K⊗s T (n). Projective representations of a group G are equivalent to unitary representations of
the central extension of the group, Ǧ [7]. The unitary representations, and the corresponding
Hilbert space of states, are determined by the Mackey method. The single particle wave
equations are given by the eigenvalue equations of the representations of the Casimir invariant
operators (47) [10].

2.2. Reciprocally relativistic quantum mechanics

Reciprocally relativistic quantum mechanics generalizes special relativistic quantum
mechanics to noninertial frames. The method directly follows the approach described in the
previous section. Reciprocally relativistic quantum mechanics is the projective representations
of the inhomogeneous unitary group.

As in the special relativistic case, the quantum theory considers the full symmetries that,
in this case, are the U(1, 3) corresponding to theO(2, 6) invariance of the Born–Green metric9.

2.2.1. Central extension: the quaplectic group. We determine the central extension of
the inhomogeneous unitary group in appendix A. The result is that the central extension
of the group U(1, 3) ⊗s T (8) is the universal cover Q(1, 3) of the quaplectic group
Q(1, 3) = U(1, 3) ⊗s H(4). The cover is

Q(1, 3) � T (1) ⊗s SU(1, 3) ⊗s H(4). (48)

Thus, using the same method as in special relativistic quantum mechanics, reciprocal
relativistic quantum mechanics is given in terms of the unitary representations of Q(1, 3).10

An element g of the special quaplectic group may be written as realized as g(�,w, ι) =
g(�, 0, 0) · g(I,w, ι), where g(�, 0, 0) ∈ SU(1, 3) and g(I,w, ι) ∈ H(4). This may be
realized as the real 10 × 10 matrices

g(�,w, ι) �

� 0 0

0 1 0
0 0 1





I 0 w

ζ · w 1 ι

0 0 1


 . (49)

The � are the homogeneous transformations �(v, f, r) in 3 + 1 dimensions between non-
inertial frames that are defined in (31). w ∈ R

8 and ι ∈ R parameterize the Heisenberg group
[5]. Calculations are more convenient if we choose a complex parameterization of this real
group. In natural units with c = b = h̄ = 1, invariance of the orthogonal and symplectic
metrics requires that

� =
(

� M

−M �

)
, (50)

9 It may be necessary to consider additional discrete symmetries as in the special relativity case.
10 The algebra ofQ(1, 3) and its cover are the same and we move between these relatively freely in these considerations.
See comment in appendix C.
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where � ∈ SO(1, 3) is the Lorentz subgroup. Then, with {w} = {x, y}, x, y ∈ R
4 and

{x} = {t, q}, {y} = {e, p}11

� = 1

2
(M + i�) , z = 1√

2
(x + iy). (51)

� ∈ SU(1, 3) are 4 × 4 complex matrices with unit determinant . If ω ∈ U(1) is a phase, then
ϒ = ω� is an element of the full U(1, 3) = U(1)⊗SU(1, 3) group (29). This may be written
compactly as the complex 6 × 6 complex matrix realization of the quaplectic group

g(ϒ, z, ι) �

ϒ 0 ϒ · z

z 1 ι

0 0 1


 . (52)

The algebra of the quaplectic group is

[Aa,b, Ac,d ] = i(ηa,dAc,b − ηb,cAa,d),
[
Z+

a , Z−
b

] = iηa,bI,[
Aa,b, Z

+
c

] = −iηa,cZ
+
b ,

[
Aa,b, Z

−
c

] = iηb,cZ
−
a ,

(53)

where U = ηa,bAa,b is the generator of the U(1) group. The Casimir invariants for the group
are [11]

C0 = I, C1 = ηa,bWa,b, . . .

C4 = ηa,bηc,dηe,f ηg,hWh,aWb,cWd,eWf,g,
(54)

where it is noted that the number of independent Casimir operators is 5 with12

Wa,b
.= Z+

aZ−
b − IAa,b. (55)

Consequently, the second-order invariant is of the form

C2 = N − IU (56)

where N = ηa,bZ+
aZ

−
b and U is the generator of the algebra of U(1) defined above. The

commutation relations for the Wa,b are

[Aa,b,Wc,d ] = i(ηa,dWb,c − ηb,cWd,a),[
Z±

c ,Wa,b

] = 0,
(57)

and therefore Wc,d are invariant under Weyl–Heisenberg translations13. It is important to note
that both of the terms in Wa,b are required in order for the commutator with Z±

c to vanish.
The Wc,d obey the same commutation relations with Aa,b as does Ac,d in (53). The Casimir
invariants of U(1, n) are [12]

D1 = ηa,bAa,b, . . .

D4 = ηa,bηc,dηe,f ηg,hAh,aAb,cAd,eAf,g.
(58)

Therefore, (53) are invariant under U(1, n) rotations and it follows that the Cα in (54) are
Casimir invariants of Q(1, n). Note also that it follows immediately that

[Dα,Dβ] = 0, [Dα,Cβ] = 0, [Cα,Cβ ] = 0. (59)

11 Note that this means the order of the coordinates (and basis) is now {t, q, e, p} rather than {t, q, p, e}. This simply
a matter that the latter is preferable for the introductory comments whereas this ordering enables the complex basis
to be most simply introduced.
12 Z−

b Z+
a may also be used in this definition, or any linear combination with Z+

a Z−
b . From the commutation relations,

they differ only by a central element I that does not affect the definition of the Casimir invariant.
13 The Weyl–Heisenberg group is the semidirect product of two translation groups. In a sense, it is a direct nonabelian
generalization of our usual concept of translation.
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2.2.2. Unitary representations of the quapletic group: Hermitian representations of its
algebra. The problem now is to determine the unitary representations of the group and the
corresponding Hermitian representation of the algebra. This is a semidirect product with an
nonabelian normal subgroup for which the Mackey representation theory is applicable (see
appendix B) [10, 13].

The results are as follows. There are two classes of representations corresponding to
whether the eigenvalues of the representation of C0 = I are zero or non-zero. If Î |ψ〉 = 0,
the Z±

b commute and this reduces to the degenerate case of the inhomogeneous group where
the normal subgroup is the abelian translation group. This is not of further interest.

If Î |ψ〉 �= 0, the little group is U(1, 3) itself and the stabilizer is the full quaplectic group.
Thus, the representations may be determined without requiring induction to the full group
from the stabilizer.

Using the Mackey method, the unitary representation is � = σ ⊗ ρ, where σ is a unitary
representation of the little group, which is U(1, 3), that acts on a Hilbert space Hσ and ρ is a
projective representation of Q(1, 3) that acts on the Hilbert space of the unitary representations
ξ of the normal subgroup H(4).

The unitary representations of U(1, 3) are known and act on a countably infinite complex
vector space Hσ � V

∞ for this non-compact case,

ε̂a,b = σ ′(Aa,b), σ ′ (Z±
a

) = 0. (60)

The generators of the Hermitian representation of the algebra of U(1, 3) have commutation
relations

[ε̂a,b, ε̂c,d ] = ηb,cε̂a,d − ηa,d ε̂c,b. (61)

The projective representation ρ is an extension of ξ , so that ρ restricted to H(4) is ξ . As
the Weyl–Heisenberg group is the semidirect product H(n) = T (n) ⊗s T (n + 1), its unitary
representations ξ may be determined using the Mackey method [9, 10]. The Hilbert space is
Hξ � L2(R4, C). The representation ξ of the Weyl–Heisenberg group is lifted to the algebra
to define Ẑ±

a = �′(Z±
a

) = ξ ′(Z±
a

)
where, as usual, in a co-ordinate basis

〈x|Ẑ±
a |ψ〉 =

(
xa ± ηa,b ∂

∂xb

)
ψ(x) =

(
xa ± ∂

∂xb

)
ψ(x). (62)

These satisfy the algebra[
Ẑ−

a , Ẑ+
b

] = ηa,bÎ = ηa,b (63)

where Î |ψ〉 = |ψ〉 and therefore the Casimir eigenvalue c0 = 1.14

As H(4) is nonabelian, it is necessary to construct a projective representation ρ that
reduces to ξ when restricted to the normal subgroup, ρ|H(4) = ξ . ρ acts on the Hilbert space
Hξ . This is equivalent to determining a Hermitian15 representation ρ ′ of the algebra acting on
Hξ . As shown in appendix C, this extension is given by

Ẑa,b = ρ ′(Aa,b) = ξ ′ (Z+
a

) · ξ ′(Z−
b ) = Ẑ+

a Ẑ−
b . (64)

These Hermitian differential operators satisfy the commutation relations[
Ẑa,b, Ẑ

+
c

] = −ηa,cẐ
+
b , [Ẑa,b, Ẑ

−
c ] = ηb,cẐ

−
a ,

[Ẑa,b, Ẑc,d ] = ηb,cẐa,d − ηa,d Ẑc,b,
(65)

with Ẑa,b and Ẑ±
c commuting with the ε̂c,b.

14 If c0 �= 1, then Ŵa,b = (1 − c0)Ẑ
+
a Ẑ−

b − ε̂a,b and this does not commute with the Ẑ±
a and therefore cannot be used

to construct the Casimirs. This is incorrect in [12]. Thanks to P Jarvis for the correct solution.
15 The quaplectic group is its own algebraic central extension.
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Finally, as �′ = σ ′ ⊕ ρ ′ act on the Hilbert space H� � V
∞ ⊗ L2(R4, C) where the

generators are given by �′(Aa,b) = Âa,b = Ẑa,b + ε̂a,b. The Ŵa,b = �(Wa,b) defined in (55),
which are used in the definition of the Casimir invariants, are

Ŵa,b = Ẑ+
a Ẑ−

b − Î Âa,b = −ε̂a,b. (66)

The Casimir eigenvalue equations in (47) may then be written out explicitly as

Ĉ0 |ψ〉 = Î |ψ〉 = |ψ〉,
Ĉ1 |ψ〉 = ηa,bŴa,b|ψ〉 = −ηa,bε̂a,b|ψ〉 = c1|ψ〉, . . .
Ĉ4 |ψ〉 = ηa,bηc,dηe,f ηg,hε̂h,a ε̂b,cε̂d,eε̂f,g|ψ〉 = c4|ψ〉.

(67)

The cα label irreducible representations16 and are given in terms of the Casimir invariants of
the group U(1, 3) through the σ representation.

The Casimir invariant operators D̂α = �′(Dα) of the unitary group are [12]

D̂α|ψ〉 = dα|ψ〉 with |ψ〉 ∈ H�, α = 1, 2, . . . , Nu = n, (68)

where the representations of the Casimir operators are

D̂1|ψ〉 = ηa,bÂa,b|ψ〉 = d1|ψ〉, . . .
D̂4|ψ〉 = ηa,bηc,dηe,f ηg,hÂh,aÂb,cÂd,eÂf,g|ψ〉 = d4|ψ〉, (69)

and where Âa,b = Ẑa,b + ε̂a,b. Substituting these into the expressions and simplifying (see
appendix C) results in the equations

ηa,b

(
xa +

∂

∂xa

) (
xb − ∂

∂xb

)
= f1(c1, d1)ψ(x),

ε̂b,a

(
xa +

∂

∂xa

)(
xb − ∂

∂xb

)
ψ(x) = f2(c1, c2, d1, d2)ψ(x),

(70)

ε̂c
bε̂c,a

(
xa +

∂

∂xa

) (
xb − ∂

∂xb

)
ψ(x) = f3(c1, . . . , c3, d1, . . . , d3)ψ(x),

ε̂d
b ε̂c

d ε̂c,a

(
xa +

∂

∂xa

) (
xb − ∂

∂xb

)
ψ(x) = f4(c1, . . . , c4, d1, . . . , d4)ψ(x),

with ε̂c
b = ηc,aε̂a,b. The fα(c1, . . . , d1, . . .) are polynomials in cβ and dβ . The cβ label

irreducible representations and the dβ label states in the irreducible representations17. This
is the set of wave equations that results from one new physical assumption, the Born–
Green metric (27). The ε̂c,d are countably infinite dimensional matrices as they are the
Hermitian representations of the algebra of U(1, 3). The wavefunctions are functions of R

4

and have countably infinite number of components. The Hilbert space on which these act is
H� � V

∞ ⊗ L2(R4, C). The wavefunctions are elements of L2(R4) and not L2(R8) because
the Weyl–Heisenberg group is required by the central extension as a direct consequence of
requiring projective representations. There is no need for a separate quantization procedure.

16 The Casimir invariants are constant for each irreducible representation. However, they may not form a complete
set, additional labels may be required to completely specify the irreducible representations. For semisimple groups
and the Poincaré group, they are sufficient.
17 As noted previously, this labelling may not be complete.
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3. Discussion

The theory outlined seeks to generalize special relativity to noninertial frames18. This
introduces a reciprocally dual relativity principle that requires forces between particle states
to be bounded by a universal constant b in addition to special relativity requiring velocity
between particle states to be bounded by c. Both velocity and force are relative. There is no
longer the concept of an absolute inertial frame nor an absolute rest frame.

The theory may be regarded as a higher dimensional spacetime where the additional
dimensions of this higher dimensional spacetime are energy and momentum. That is, these
additional dimensions are just as physical as the position and time degrees of freedom.
Position–time space19 is not an invariant subspace for noninertial observers for which the
transformations between frames are given by the unitary group. Different noninertial observers
define this subspace differently. In this sense, position–time space (that is, our current concept
of spacetime) has become relative. Energy–momentum may transform into spacetime. In the
inertial limit b → ∞, an invariant position–time space is recovered [14].

The bound b of relative forces means that force singularities cannot exist. A theory that is
invariant under the noninertial group will bound these effects through noninertial relativistic
effects that result from the generalized concept of contractions and dilations (34). Other
approaches to resolving these singularities include assume a minimum length or a maximum
acceleration [15–18].

Quantum mechanics is formulated by identifying physical states with rays in a Hilbert
space. This leads to projective representations of the inhomogeneous noninertial relativity
group. These are the unitary representations of the central extension that is the cover of the
quaplectic group. This group has the Weyl–Heisenberg group as the normal subgroup with
the associated Heisenberg algebra. Thus the basic Heisenberg relations result from requiring
projective representations of the inhomogeneous group for the noninertial frames.

The Hilbert space of the Weyl–Heisenberg group H(4) is L2(R4) not L2(R8). Thus
the wavefunctions are a function of a four-dimensional subspace of commuting degrees of
freedom. One such set is position–time but three additional canonical sets may also be used.
This is simply represented by arranging the basis of the algebra {T ,Qi, Pi, E} into a quad
with the four generators on each face commuting:

T Qi

Pi E.
(71)

Just as nonrelativistic mechanics must be obtained from the limit c → ∞, we must obtain
special relativistic quantum mechanics from the reciprocal relativistic quantum mechanics
in the limit b → ∞. The next step in this investigation is to determine whether the wave
equations for single particle states determined from the representations of the quaplectic group
reduce to the special relativity inertial case in the limit b → ∞.20

18 Note that in general relativity, particles that are only under the influence of gravity follow geodesics and so are
locally inertial. The problem of determining a corresponding generalization of the theory described here to a manifold
that is curved (and in this case noncommutative) has not yet been studied.
19 That is, our usual concept of spacetime.
20 At first glance this does not seem likely to be the case particularly due to the wavefunctions having countably
infinite dimensional components. For an example of the effects of limits, recall that the ordinary three-dimensional
nonrelativistic quantum harmonic oscillator has the Hilbert space Z ⊗ L2(R3, C). The classical limit has a Hilbert
space L2(S2, C).
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Appendix A. Central extensions of Lie groups

The projective representation of a Lie group is equivalent the unitary (or antiunitary)
representation of the central extension of the group [7]. The central extension is algebraic or
topological or both. Consider first the algebraic extension. Suppose {Xα} are the generators
of the Lie group G with commutators

[Xα,Xβ ] = C
γ

α,βXγ (A.1)

with α, β, . . . = 1, . . . dim(G). Then, the central extension is the addition of a central generator
Ia, [Xα, Ia] = 0, with commutator

[Xα,Xβ ] = C
γ

α,βXγ + C̃a
α,βIa, (A.2)

a = 1, . . . , m, where m is the dimension of the central extension. This new commutation
relation must also satisfy the Jacobi identities

[Xγ , [Xα,Xβ ]] + [Xα, [Xβ,Xγ ]] + [Xβ, [Xγ ,Xα]] = 0. (A.3)

Clearly C̃
γ

α,β = C
γ

α,β is a trivial solution involving only the redefinition Xγ → Xγ + Iγ and
need not be considered.

A direct calculation using the structure constants for the inhomogeneous Lorentz group
shows that there are no nontrivial solutions in this case. On the other hand, a direct computation
for the inhomogeneous unitary group, U(1, n)⊗s T (2n+ 2), with the generators of the algebra
satisfying (53) shows that there is a one-dimensional (m = 1) central extension such that[
Z+

a , Z−
b

] = iIηa,b. This is the algebra of the Heisenberg group21.
The topological extension is the universal cover G of G where

π : G → G with ker(π) � D. (A.4)

D is an abelian discrete subgroup that is the central extension that is also the first homotopy
group. For the case of a semidirect product of matrix groups where G = K ⊗s N , the cover is
given by G = K ⊗s N .

It is well known that SL(2, C) is a double cover of the Lorentz group L, π : SL(2, C) →
L with ker(π) � D � Z2. The translation group is simply connected and is its own cover
and so the central extension of the inhomogeneous proper orthochronous Lorentz group is
SL(2, C) ⊗s T (4).

The quaplectic group may be written as Q(1, 3) = U(1) ⊗s SU(1, 3) ⊗s H(4). SU(1, 3)

is simply connected and is its own cover. The cover of the U(1) group is the translation group

π : T (1) → U(1) with ker(π) � Z. (A.5)

The Weyl–Heisenberg group is simply connected and is its own cover. Therefore, the central
extension of the inhomogeneous unitary group U(1, 3) ⊗s T (8) is

Q(1, 3) � T (1) ⊗s SU(1, 3) ⊗s H(4). (A.6)

21 A semidirect product must be a subgroup of the group of automorphisms of the normal subgroup. For the Heisenberg
group H(n), this is essentially Sp(2n) ⊗s H(n). SO(1, 3) is not a subgroup of Sp(4) and so this central extension is
not possible whereas U(1, 3) ⊂ Sp(8) and so it is possible in this case.



4014 S G Low

Appendix B. Unitary irreducible representations of semidirect product groups

The problem of determining the unitary irreducible representations of a general class of
semidirect product groups has been solved by Mackey [8]. Application to the Weyl–Heisenberg
and quaplectic groups may be found in [9, 19]. Mackey formulates the theorem for a very
general class of groups. All the groups under consideration are well behaved, real matrix Lie
groups and their covers for which the conditions are sufficient for the theorems to apply. The
Mackey theorems are reviewed in [10] and briefly summarized here. In addition, the manner
in which the results lift to the algebra is given as they are required for the determination of the
field equations.

B.1. Unitary irreducible representations of the Lie group

Suppose that N and K are matrix groups that are algebraic with unitary irreducible
representations ξ and σ on the respective Hilbert spaces Hξ and Hσ . Then for z ∈ N ,
and k ∈ K

ξ(z) : Hξ → Hξ : |φ〉 �→ ˜|φ〉 = ξ(z)|φ〉,
σ (k) : Hσ → Hσ : |ϕ〉 �→ ˜|ϕ〉 = σ(k)|ϕ〉. (B.1)

The general problem is to determine the unitary irreducible representations �, and the
Hilbert space H� on which it acts, of the semidirect product G = K ⊗s N ,

�(g) : Hσ → Hσ : |ψ〉 �→ ˜|ψ〉 = �(g)|ψ〉. (B.2)

The Mackey theorems state that these unitary irreducible representations � may be
constructed by first determining the representations �◦ of the stabilizer groups, G◦ ⊆ G
and then using an induction theorem to obtain the representations on the full group G. A
sufficient condition for the Mackey method to apply is that G,K and N are matrix groups that
are algebraic in the sense that they are defined by polynomial constraints on the general linear
groups.

The stabilizer group is G◦ = K◦ ⊗s N where the little group K◦ ⊂ K is defined for
each of the orbits. These orbits are defined by the natural action of elements k ∈ K on the
unitary dual N̂ of N . The action defining the orbits is k : N̂ → N̂ : ξ �→ ξ̃ = kξ where
(kξ)(z) = ξ(k · z · k−1) for all a ∈ N . The little groups K◦ are defined by a certain fixed point
condition on each these orbits.

For the case that N is abelian, the fixed point condition is kξ = ξ and the little group is
K◦ = {k|kξ = ξ}. The representation �◦ = σ ⊗ χ acts on the Hilbert space H�◦ � Hσ ⊗ C.
Note that as N is abelian, N � R

n under addition and the representations are the characters
ξc(z) = χc(z) = eiz·c and Hξ � C.

For the case that N is not abelian, the fixed point condition is kξ = ρ(k)ξρ(k)−1 and
the representation �◦ = σ ⊗ ρ acts on the Hilbert space H�◦ � Hσ ⊗ Hξ . ρ is a projective
extension of the representation ξ to G◦, ρ(g) : Hξ → Hξ for g ∈ G◦ with ρ|N � ξ . If
N is abelian, the extension is trivial, ρ|K � 1 and this reduces to the abelian case above.
Otherwise, the projective representations ρ are equivalent to the unitary representations of the
central extension Ǧ◦ of G◦ using the method of appendix A.

If the stabilizer is equal to the group, G = G◦ we are done. Otherwise the Mackey
induction theorem is required to induce the representation on the full group [10]. As the
induction theorem is not required for the quaplectic group, it is not reviewed further here.
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B.2. Hermitian representation of the Lie algebra

These unitary representations may be lifted to the algebra. Define Teξ = ξ ′, Teσ = σ ′ and
Te�

◦ = �◦′. Assume that G◦ is the central extension so that representations of the group
are unitary and the algebra are Hermitian. Then for Z ∈ a(N ) � TeN , A ∈ a(K◦) and
W = A + Z ∈ a(G) we have

�◦′(W) : H�◦ → H�◦ = σ ′(A) ⊕ ρ ′(W) : Hσ ⊗ Hξ → Hσ ⊗ Hξ

: |ψ〉 �→ ˜|ψ〉 = σ ′(A)|ϕ〉 ⊗ |φ〉 ⊕ |ϕ〉 ⊗ ρ ′(W)|φ〉. (B.3)

The basis of the algebra satisfies the Lie algebra

[Aµ,Aν] = cλ
µ,νAλ,

[Zα,Zβ ] = c
γ

α,βZγ ,

[Aµ,Zα] = cν
µ,αAν.

(B.4)

where α, β, . . . = 1, . . . , dim(N ) and µ, ν, . . . = 1, . . . , dim(K). Then, the Hermitian ρ of
the generators (of the central extension) satisfies the commutation relations

[ρ ′(Aµ), ρ ′(Aν)] = icλ
µ,νρ

′(Aλ),

[ρ ′(Zα), ρ ′(Zβ)] = icγ

α,βρ ′(Zγ ), (B.5)

[ρ ′(Aµ), ρ ′(Zα)] = icν
µ,αρ ′(Aν).

As we are using Hermitian operators (instead of anti-Hermitian operators), an i appears
in the exponential �(k) = e−iÂ, �(n) = e−iẐ . The ρ ′(Aα) act on the Hilbert space Hξ and
therefore must be elements of the enveloping algebra e(N ) � a(N ) ⊕ a(N ) ⊗ a(N ) ⊕ . . . .

Therefore

ρ ′(Aµ) = dα
µξ ′(Zα) + dα,β

µ ξ ′(Zα)ξ ′(Zβ) + · · · . (B.6)

These may be substituted into the commutation relations above to determine the constants{
dα

µ, dα,β
µ , . . .

}
. In particular for the quaplectic group, this leads to (64).

Appendix C. Wave equations of the quaplectic group

The eigenvalue equations of the Hermitian representations of the Casimir invariant operators
define the wave equations that are the single particle state equations for the theory (47). These
are given explicitly in (67)–(69). In the following it is shown that these reduce to (70). First
note that, from (69)

ηa,bÂa,b|ψ〉 = ηa,b(Ẑa,b + ε̂a,b)|ψ〉 = d1|ψ〉 (C.1)

and therefore

N̂ |ψ〉 = ηa,bẐ+
a Ẑ−

b |ψ〉 = f1(c1, d1)|ψ〉 (C.2)

with f1(c1, d1) = (d1 + c1). As both c1 and d1 are Casimir invariant constants of the T (1)

group, d1, c1 ∈ R. (Note that for U(1) in the Q(1, 3) case, d1, c1 ∈ N.) In a coordinate basis
(62), this is the relativistic oscillator(

∂2

∂t2
− ∂2

∂q2
− t2 + q2 − 2m − c1 − n + 1

)
ψ(t, q) = 0

where we set d1 = 2m. Natural units c = b = h̄ = 1 are being used. Boundary conditions
that the wavefunction vanishes at infinity require that c1 = 0 and m ∈ N. It is important
to emphasize that ψ(t, q) ∈ L2(R4, C) and so is not constrained to a mass shell that causes
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problems in the interpretation of this equation in the context of special relativistic quantum
mechanics.

The next equation is

ηb,cηa,dÂa,bÂc,d |ψ〉 = ηb,cηa,d(Ẑa,b + ε̂a,b)(Ẑc,d + ε̂c,d )|ψ〉 = d1|ψ〉. (C.3)

By using the commutation relations for Ẑ±
a , it may be shown that

ηb,cηa,d Ẑa,bẐc,d = g2(N̂) = N̂(N̂ − n).

This generalizes to gk(N̂) = N̂(N̂ − n)
k−1

. Therefore, (C.3) may be written as

ηb,cηa,d Ẑ+
a Ẑ−

b ε̂c,d |ψ〉 = f2(c1, c2, d1, d2)|ψ〉 (C.4)

where

f2(c1, c2, d1, d2) = 1
2 (d2 − c2 − g2(d1 + c1)). (C.5)

This process may be repeated for higher order equations yielding (70). The ca are labels
for irreducible representations and the da are labels for states within these irreducible
representations.
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